Salt loading induces redistribution of the plasmalemmal Na/K-ATPase in proximal tubule cells.
نویسندگان
چکیده
BACKGROUND We have reported that digitalis-like substances (cardiotonic steroids), including marinobufagenin (MBG), induce endocytosis of the plasmalemmal Na/K-ATPase in LLC-PK1 cells. The current report addresses the potential relevance of plasmalemmal Na/K-ATPase redistribution to in vivo salt handling. METHODS Male Sprague-Dawley rats were given 1 week of a high salt (4.0% NaCl) or normal salt (0.4% NaCl) diet. Urinary sodium excretion, as well as MBG excretion, was monitored, and proximal tubules were isolated using a Percoll gradient method. Tubular (86)Rb uptake, Na/K-ATPase enzymatic activity, and Na/K-ATPase alpha1 subunit density were determined. RESULTS The high salt diet increased urinary sodium (17.8 +/- 1.8 vs. 2.5 +/- 0.3 mEq/day, P < 0.01) and MBG excretion (104 +/- 12 vs. 26 +/- 4 pmol/day), and decreased proximal tubular (86)Rb uptake (0.44 +/- 0.07 vs. 1.00 +/- 0.10, P < 0.01) and Na/K-ATPase enzymatic activity (5.1 +/- 1.1 vs. 9.9 +/- 1.6 micromol/mg pr/hr, P < 0.01) relative to the normal diet. Proximal tubular Na/K-ATPase alpha1 protein density was decreased in the plasmalemma fraction but increased in both early and late endosomes following the high salt diet. In rats fed a high salt diet, anti-MBG antibody caused a 60% reduction in urinary sodium excretion, substantial increases in proximal tubule (86)Rb uptake, and Na/K-ATPase enzymatic activity, as well as significant decreases in the early and late endosomal Na/K-ATPase alpha1 protein content. CONCLUSION These data suggest that redistribution of the proximal tubule Na/K-ATPase in response to endogenous cardiotonic steroids plays an important role in renal adaptation to salt loading.
منابع مشابه
Impairment of Na/K-ATPase signaling in renal proximal tubule contributes to Dahl salt-sensitive hypertension.
We have observed that, in renal proximal tubular cells, cardiotonic steroids such as ouabain in vitro signal through Na/K-ATPase, which results in inhibition of transepithelial (22)Na(+) transport by redistributing Na/K-ATPase and NHE3. In the present study, we investigate the role of Na/K-ATPase signaling in renal sodium excretion and blood pressure regulation in vivo. In Sprague-Dawley rats, ...
متن کاملOuabain-induced endocytosis of the plasmalemmal Na/K-ATPase in LLC-PK1 cells requires caveolin-1.
BACKGROUND We have demonstrated that ouabain causes dose- and time-dependent decreases in (86)Rb uptake in pig renal proximal tubule cell line (LLC-PK1) cells; and ouabain induces endocytosis of plasmalemmal Na/K-ATPase in LLC-PK1 cells in a clathrin-dependent pathway. Our data also suggest a role of endocytosis in both ouabain-induced signal transduction and proximal tubule sodium handling. Th...
متن کاملOuabain induces endocytosis of plasmalemmal Na/K-ATPase in LLC-PK1 cells by a clathrin-dependent mechanism.
BACKGROUND We have demonstrated that ouabain causes dose- and time-dependent decreases in (86)Rb uptake in porcine proximal tubular (LLC-PK1) cells. The present study addresses the molecular mechanisms involved in this process. METHODS Studies were performed with cultured LLC-PK1 and Src family kinase deficient (SYF) cells. RESULTS We found that 50 nmol/L ouabain applied to the basal, but n...
متن کاملShear stress-induced changes of membrane transporter localization and expression in mouse proximal tubule cells.
Our previous studies of microperfused single proximal tubule showed that flow-dependent Na(+) and HCO(3)(-) reabsorption is due to a modulation of both NHE3 and vacuolar H(+)-ATPase (V-ATPase) activity. An intact actin cytoskeleton was indicated to provide a structural framework for proximal tubule cells to transmit mechanical forces and subsequently modulate cellular functions. In this study, ...
متن کاملAminopeptidase N reduces basolateral Na+ -K+ -ATPase in proximal tubule cells.
Aminopeptidase N/CD13 (Anpep) is a membrane-bound protein that catalyzes the formation of natriuretic hexapeptide angiotensin IV (ANG IV) from ANG III. We previously reported that Anpep is more highly expressed in the kidneys of Dahl salt-resistant (SR/Jr) than salt-sensitive (SS/Jr) rats, Anpep maps to a quantitative trait locus for hypertension, and that the Dahl SR/Jr rat contains a function...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Kidney international
دوره 67 5 شماره
صفحات -
تاریخ انتشار 2005